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Given a connected and undirected graph G, the degree
preserving spanning tree problem (DPSTP) asks for a
spanning tree of G with the maximum number of ver-
tices having the same degree in the tree and in G. These
are called full degree vertices. We introduce integer pro-
gramming formulations, valid inequalities and four exact
solution approaches based on different formulations.
Two branch-and-bound procedures, a branch-and-cut
(BC) algorithm and an iterative probing combinatorial
Benders decomposition method are introduced here. The
problem of optimally lifting one of the classes of valid
inequalities proposed here is equivalent to solving a
DPSTP instance, for a conveniently defined subgraph of
G. We thus apply one of the proposed methods to opti-
mally lift these cuts, within the other solution methods.
In doing so, two additional algorithms, a hybrid Benders
decomposition and a hybrid BC are proposed. Exten-
sive computational experiments are conducted with the
solution algorithms introduced in this study. © 2015 Wiley
Periodicals, Inc. NETWORKS, Vol. 65(4), 329–343 2015
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1. INTRODUCTION

Assume, we are given a connected undirected graph G =
(V , E) with n = |V | vertices and m = |E| edges, and let
G′ = (V , E′) be a subgraph of G. Denoting by δG(i) and
δG′(i), the sets of edges incident to vertex i respectively in
G and G′, whenever |δG′(i)| = |δG(i)|, i is of full degree (or
degree preserving) in G′. Otherwise, if |δG′(i)| < |δG(i)|, i is
of incomplete degree in that subgraph. The degree preserving
spanning tree problem (DPSTP) asks for a spanning tree of
G with as many full degree vertices as possible. The problem
is also known in the literature as the full degree spanning tree
problem [1]. For the input graph given on the left of Figure 1,
we provide two spanning trees with different numbers of full
degree vertices. The spanning tree on the right has two full
degree vertices and the one in the middle has only one.

DPSTP has also been investigated in [11] under a com-
plementary problem named the vertex feedback edge set
problem (VFESP). The VFESP looks for a cotree (the com-
plement of a tree) of G incident to the minimum number of
vertices. As the vertices that are not incident to the edges of a
cotree are exactly those with full degree in its corresponding
tree, a solution to one problem directly leads to a solution to
the other.

The most widely known application of DPSTP originates
from a VFESP context: one is given a water distribution net-
work where flows in the edges (pipes) are to be measured
[19]. That could be accomplished by simply installing flow
meters in all network edges. However, a cheaper alternative is
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FIG. 1. For a given input graph on the left, two spanning trees with one
and two full degree vertices.

to install flow meters only in the edges of a cotree of the net-
work. Flow for the remaining edges could then be inferred by
assuming that conservation laws apply. In doing so, precisely
m − n + 1 flow meters would be required. Another attrac-
tive alternative is to install pressure meters in the vertices of
the network and then use the pressure drop in the endpoints
of a pipe to calculate its flow. According to [19], it suffices
to install pressure meters at vertices that are incident to the
edges of a cotree of the network. An advantage of the latter
approach is that pressure meters are much cheaper than flow
meters [19]. As a result, minimizing the number of vertices
incident to the cotree leads to the most economical choice.
Finally, as long as Kirchoff’s conservation laws apply, such
a DPSTP/VFESP application could be found in other types
of networks (electrical, acoustical, or thermal, for example),
where one wishes to measure different types of flows [2].

On the complexity side, DPSTP was proven to be NP-
complete, even if G is a split or bipartite planar graph [1, 2].
If G is planar, DPSTP admits a linear time approximation
algorithm. The problem is polynomially solvable when G
has a bounded treewidth [2], when G is strongly chordal [13]
or a directed path graph [13]. Additional polynomial time
algorithms for DPSTP were suggested in [2] for cocompara-
bility graphs and for graphs with bounded asteroidal number.
The directed version of DPSTP was investigated in [14].

Lewinter [12] proved that the number of full degree ver-
tices in spanning trees of G interpolates, meaning that if there
exist two spanning trees T1 and T2 with, respectively t1 and
t2 full degree vertices, there must exist a spanning tree T with
exactly t full degree vertices, for t1 < t < t2. Such a property
is of key importance for the development of one of the exact
solution approaches introduced here.

To date, solution approaches to DPSTP are mostly
restricted to approximation algorithms [2] and heuristics
[11, 19]. Bhatia et al. [1] propose a polynomial time approx-
imation algorithm with an O(

√
n) approximation factor. To

the best of our knowledge, the only existing exact solu-
tion approaches to DPSTP are the branch-and-bound (BB)
algorithm in Bhatia et al. [1] and the branch-and-cut (BC)
algorithm in Gendron et al. [6]. The former algorithm is
based on linear programming (LP) upper bounds given by
a multicommodity network flow formulation of the problem.
However, virtually no computational results are available
for it.

This paper improves on our previous results [6] in vari-
ous ways. Specifically, we introduce additional families of

valid inequalities for DPSTP and three new exact solution
approaches for the problem, a combinatorial Benders decom-
position method and two BB algorithms. One of the BB
algorithms indirectly relies on Lagrangian relaxation upper
bounds, while the other is based on a technique known as
reformulation by intersection [8]. These new algorithms are
compared here to an improved version of the BC algorithm
in [6]. In this process, additional optimality certificates are
obtained for the test instances used in [6].

The article is organized as follows. In Section 2, we
describe four integer programming formulations of DPSTP
and some families of valid inequalities for the problem. Each
formulation gives rise to a different exact solution algo-
rithm, described in Section 3. Computational experiments are
reported in Section 4 and the article is closed in Section 5,
with suggestions for future research.

2. INTEGER PROGRAMMING FORMULATIONS

Let D = (V , A) be the directed graph originating from G
after taking A = {(i, j) ∪ (j, i) : {i, j} ∈ E}. For any S ⊆ V ,
denote by �(S) the closed neighborhood S ∪ {j ∈ V : {i, j} ∈
δG(i), i ∈ S} of S. Additionally, let E(S) = {{i, j} ∈ E :
i, j ∈ S} and δG(S) = {{i, j} ∈ E : i ∈ S, j /∈ S} denote,
respectively, the subset of edges of E with both endpoints
in S and the subset formed by the edges of E with only one
endpoint in S. Corresponding notation for D is A(S, V\S) =
{(i, j) ∈ A : i ∈ S, j /∈ S}, which denotes the set of arcs
pointing from a vertex in S to a vertex in V\S. We assume that
T denotes the set of all spanning trees of G, while F denotes
the collection of all cycle-free subgraphs of G. For a given
spanning tree T = (V , ET ) of G and an edge e ∈ E\ET , we
use CT ,e for the set of vertices in the unique cycle of subgraph
(V , ET ∪{e}). Given any real valued function f defined over a
finite set Q and a subset Q′ ⊆ Q, f (Q′) = ∑

q∈Q′ fq applies.
For simplicity, from now on, for a given S ⊆ V , whenever

we refer to edges of the input graph G and not to those of
a subgraph of G, we will be using δ(S) instead of δG(S).
Additionally, for any formulation P of DPSTP, the LP upper
bound implied by it will be denoted by w(P). Finally, if S
contains a single element, say i, δ(i) will be used instead of
δ({i}).

Optimization problems that ask for optimal trees with
side constraints can be formulated in many different ways,
depending on how solution connectivity is enforced. In this
investigation, a formulation that only involves decision vari-
ables associated with choosing full degree vertices in cycle
free subgraphs is initially presented. Then, we describe an
undirected formulation for which LP upper bounds, although
very weak, can be computed very efficiently. A third formu-
lation is a directed model that is reinforced with additional
valid inequalities. Some of these inequalities turn the for-
mulation into a nonsymmetrical model, that is, LP upper
bounds vary according to the vertex chosen as the arbores-
cence root. Accordingly, we resort to the reformulation by
intersection technique [8] to obtain a fourth DPSTP model,

330 NETWORKS—2015—DOI 10.1002/net



originating from the previous one, for which LP upper bounds
are symmetrical.

No matter how and if connectivity conditions are explic-
itly imposed, all formulations above contain inequalities that
exploit the following properties of full degree sets of vertices.

Proposition 1. Given V ′ ⊆ V, there exists a spanning tree
T = (V , ET ) of G such that |δT (i)| = |δ(i)| for all i ∈ V ′, if
and only if subgraph (�(V ′), δ(V ′) ∪ E(V ′)) belongs to F .

Proof. If subgraph (�(V ′), δ(V ′) ∪ E(V ′)) contains a
cycle, at least one of its edges must not be a spanning
tree edge. Accordingly, a spanning tree of G where all ver-
tices in V ′ are full degree would not exist. Conversely, if
(�(V ′), δ(V ′)∪E(V ′)) is cycle free, then there must be a span-
ning tree (V , ET ) such that (δ(V ′) ∪ E(V ′)) ⊆ ET , otherwise
G would not be connected. ■

Corollary 2. If GV ′ = (V ′, E(V ′)) /∈ F , for V ′ ⊆ V, then at
least two vertices of V ′ must not be of full degree. A particular
case of these subgraphs occurs when there exists a simple
cycle of GV ′ visiting all vertices of V ′.

The formulations that follow use binary 0-1 variables {yi :
i ∈ V} to select full degree vertices. Accordingly, yi = 1 if i
is of full degree and yi = 0, otherwise.

2.1. Formulation Based only on the y Variables

Proposition 1 and Corollary 2, respectively, translate into
the split cuts (1) and the cycle cuts (2) that follow:

y(V ′) ≤ |V ′| − 1, for V ′ ⊂ V such that

(�(V ′), δ(V ′) ∪ E(V ′)) /∈ F (1)

and

y(V ′) ≤ |V ′| − 2, for V ′ ⊂ V such that (V ′, E(V ′)) /∈ F .
(2)

Notice that cycle cuts (2) can be understood as a stronger
particular case of split cuts (1), that is, when there exists at
least one edge in E(V ′) that is surely not in any spanning tree
of G. Notice as well that both (1) and (2) may be lifted to:

y(V ′) ≤ α(V ′), (3)

where α(V ′) is the optimal objective function value of the
following combinatorial optimization problem:

α(V ′) = max{|V̄ | : V̄ ⊆ V ′, (�(V̄), δ(V̄) ∪ E(V̄)) ∈ F}.
(4)

Obtaining optimal values α(V ′) is as hard as solving the
original problem. However, when some particular structures
apply, the picture changes for the better. For instance, if
(V ′, E(V ′)) defines a clique of G, the right hand side of (2)
could be decreased to 1. Likewise, if |E(V ′)| ≥ |V ′|+1 holds,

at least two edges of E(V ′) may not be used in a degree
preserving spanning tree. Therefore, the right hand side of
cycle cuts (2) could be lifted to |V ′| − 3. Obviously, when no
alternative is available, valid upper bounds on α(V ′) may be
used to produce weaker versions of the cuts.

Finally, if PC represents the intersection of all constraints
(1) and (2), a formulation of DPSTP is given by

w = max{y(V) : y ∈ PC ∩ B
n}. (5)

2.2. Undirected Formulation of DPSTP

Binary 0-1 variables {zij : {i, j} ∈ E} are used to select
spanning tree edges. Accordingly, zij = 1 holds if edge i, j
is selected while zij = 0 applies, otherwise. DPSTP is then
formulated as:

w = max{y(V) : (z, y) ∈ Pu ∩ B
m+n}, (6)

where Pu denotes the intersection of the spanning tree
polytope PSTP, that is,

z(E) = n − 1 (7a)

z(E(S)) ≤ |S| − 1, S ⊂ V , S �= ∅, (7b)

ze ≤ 1, e ∈ E, (7c)

ze ≥ 0, e ∈ E, (7d)

with the degree-enforcing inequalities

yi|δ(i)| ≤ z(δ(i)), ∀i ∈ V . (8)

Constraints (8) guarantee that all edges incident to i must
be selected, whenever yi = 1 holds. However, they do not
explicitly forbid selection of any of these edges when yi = 0
holds, instead. In any case, irrespective of that, due to the
objective function used, the latter type of solution would
never be optimal. Therefore, although (6) is not a DPSTP
formulation in the strict sense, it may be used to find optimal
solutions for DPSTP. Likewise, valid DPSTP upper bounds
are given by the LP relaxation of (6). One important property
about the LP relaxation of (6) is summarized in the following
result.

Proposition 3. The value of the LP relaxation of (6) can be
obtained by solving the following LP:

w(Pu) = max

⎧⎨
⎩

∑
{i,j}∈E

(1/|δ(i)| + 1/|δ(j)|)zij : z ∈ PSTP

⎫⎬
⎭ .

(9)

In other words, (6) and (9) are LP equivalent.

Proof. It is not difficult to verify, for the LP relaxation
of (6), that inequalities (8) must be tight. Indeed, inequalities
(8) involve only one entry of y at a time and it would thus
be suboptimal to leave any constraint (8) slack. Therefore,
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replacing yi in the objective function by 1
|δ(i)| z(δ(i)), for all

i ∈ V , and dropping inequalities (8), DPSTP upper bounds
can be obtained by solving (9). ■

The LP (9) can be linked to a Lagrangian relaxation of
model (6). If constraints (8) are relaxed and dualized in a
Lagrangian fashion, with multipliers {μi ≥ 0 : i ∈ V}
attached to them, the corresponding Lagrangian subproblem
is L(μ) = max{∑i∈V (1 − μi|δ(i)|)yi + ∑

i∈V μiz(δ(i)) :
z ∈ PSTP ∩ B

m}. Given that the Lagrangian subproblem has
the integrality property, the Lagrangian dual gives the same
bound as the LP relaxation. Hence, optimal multipliers are
μi = 1

|δ(i)| forall i ∈ V and (9) is precisely the (optimal)
Lagrangian subproblem.

As our computational results demonstrate, DPSTP upper
bounds w(Pu) are weak. However, an effective BB algo-
rithm results from them, because these bounds are efficiently
obtained by generating maximum weight spanning trees of
G, under the conveniently defined weight function that results
from (9).

A similar formulation and exact solution algorithm were
proposed by Fujie [5] for the maximum leaf spanning tree
problem (MLSTP). In that case, constraints akin to (8) are
used to characterize leaf nodes in spanning trees. Bearing
in mind that those constraints would always be tight at LP
relaxations for MLSTP, Fujie used them to project out leaf
defining variables from the objective function in the MLSTP
formulation. As a consequence, the LP relaxation of that for-
mulation could be evaluated by solving a maximum weight
spanning tree problem, akin to (9), with other conveniently
defined weights. Therefore, the LP relaxation bounds pro-
vided by (9) are obtained essentially following the guidelines
proposed by Fujie for MLSTP.

Formulation Pu can be significantly strengthened with
valid inequalities such as yi ≤ zij and yj ≤ zij forall {i, j} ∈ E.
These inequalities imply that a vertex cannot be of full degree
if an edge incident to it is missing from the spanning tree. We
do not use them in Pu, as the efficient bounding procedure
outlined above would not apply anymore. Directed versions
of these inequalities are going to be considered next, in a
directed formulation of the problem.

2.3. Directed Formulation for DPSTP

The topology behind the DPSTP formulation to be
described next is that of a spanning arborescence of digraph
D = (V , A), rooted at a preselected vertex r. Besides the
previously defined variables {yi : i ∈ V}, the formulation
also involves binary variables {xr

ij : (i, j) ∈ A}, to establish
whether or not an arc (i, j) ∈ A appears in the arborescence.
In case it does, xr

ij = 1 holds; otherwise, xr
ij = 0 applies. The

formulation is given by

w = max
{

y(V) : (xr , y) ∈ Pr
d ∩ B

2m+n
}

, (10)

where polytope Pr
d is defined as

xr(A) = n − 1 (11a)

xr(A(V \ {i}, {i})) = 1, ∀i ∈ V \ {r} (11b)

xr(A(V \ S, S)) ≥ 1, ∀S ⊂ V \ {r}, S �= ∅ (11c)

yi − xr
ij − xr

ji ≤ 0, ∀i ∈ V , {i, j} ∈ δ(i) (11d)

xr
ij ≥ 0, ∀(i, j) ∈ A, (11e)

yi ≥ 0, ∀i ∈ V . (11f)

Constraints (11d) enforce that i is of full degree only if an
arc corresponding to every edge {i, j} ∈ δ(i), that is, (i, j) or
(j, i), appears in the arborescence. Constraints (11a) enforce
that as many arcs as it is necessary to obtain a spanning
arborescence of D are selected. Directed cutset inequalities
(11c) guarantee that there must exist a path connecting r to
every other vertex in the solution. Indegree constraints (11b)
are implied by (11a) and (11c). To verify that, take S = {i}
for i �= r and write xr(A(V \ {i}, {i})) ≥ 1. Summing over
i ∈ V \ {r}, one obtains

∑
i∈V\{r} xr(A(V \ {i}, {i})) ≥ n − 1.

As for any feasible solution xr(A(V \ {r}, {r})) = 0 holds,
one has

∑
i∈V\{r} xr(A(V \ {i}, {i})) = xr(A) − xr(A(V \

{r}, {r})) = xr(A) = n − 1. Thus, as xr
ij ≥ 0 for every

(i, j) ∈ A, xr(A(V \ {i}, {i})) ≥ 1 must hold tight and (11b)
follows. Despite that, constraints (11b) are included in the
model, as our computational experience indicates that they
help in computing the bound w(Pr

d) at lower CPU times.
In addition to xr and y, the multicommodity flow DPSTP

formulation in [1] relies on real valued flow variables and
flow balance constraints to ensure solution connectivity. The
projection of that formulation into the xr space is precisely
the intersection of (11a), (11b), (11c), and (11e) [16]. The
formulation in [1] also uses constraints (11d) to define full
degree vertices. As a result, Pr

d and the formulation in [1] pro-
duce the same LP bound, w(Pr

d). Consider now the following
degree enforcing inequalities:

xr(A({i}, V \ {i})) − yi ≤ |δ(i)| − 2, ∀i ∈ V \ {r} (12a)

xr(A({r}, V \ {r})) − yr ≤ |δ(r)| − 1 (12b)

xr(A({i}, V \ {i})) − (|δ(i)| − 1)yi ≥ 0 ∀i ∈ V \ {r}.
(12c)

Constraints (12a) impose that, if i ∈ V \ {r} and i is not
of full degree, at most |δ(i)| − 2 arcs must point outward
of i (|δ(i)| − 1, in case yi = 1). A similar reasoning applies
to inequalities (12b). Conversely, constraints (12c) guarantee
that, if yi = 1, exactly |δ(i)|−1 arcs must leave vertex i. Notice
that, summing up constraints (11d) for all {i, j} ∈ δ(i) and
using (11b), one ends up with x(A({i}, V \{i})) ≥ |δ(i)|yi −1,
which is weaker than (12c). Thus, stronger LP upper bounds
are likely to be obtained if the three families of inequalities
indicated above are appended to Pr

d . Assume thus that Pr
D

denotes the intersection of polytope Pr
d with constraints (12).

Constraints akin to (12) appear in directed models for other
combinatorial optimization problems defined over spanning
trees, where the degree of the vertices play a role either in the
feasibility of the tree or in the objective cost function. That is,
the case of the MLSTP [4, 15] and the min-degree constrained
minimum spanning tree problem [17], for instance.
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Although for our test bed instances, no bound improve-
ments were observed after appending (12a) and (12b) to
the formulation, it is not difficult to establish that these
inequalities are not redundant. To that aim, one can simply
pick any vertex i and optimize the linear function xr(A({i},
V \ {i})) − yi over Pr

d , together with (12c). In doing that, it
could be shown that the objective function of that LP exceeds
the right-hand-side of (12a). In addition, our computational
experiments indicate that fewer BC nodes result when these
two inequalities are kept in the model.

After appending inequalities (12) to Pr
d , the resulting for-

mulation Pr
D may become non symmetrical with respect to

the root choice. In other words, depending on which vertex r
is used as the arborescence root, different DPSTP LP relax-
ation upper bounds may result. As the next result indicates,
formulation Pr

d (and Pr
D) are stronger than Pu.

Proposition 4. w(Pr
d) ≤ w(Pu)

Proof. Let (x̄r , ȳ) ∈ Pr
d . For every i ∈ V , sum constraints

(11d) over {i, j} ∈ δ(i) to obtain |δ(i)|ȳi ≤ ∑
{i,j}∈δ(i)(x̄

r
ij +

x̄r
ji). Define ŷ = ȳ and ẑij = x̄r

ij + x̄r
ji for every {i, j} ∈ E.

Thus, constraints (8) are satisfied by (x̂, ŷ). As ẑ must be a
point in PSTP (see [16] for details), (ẑ, ŷ) ∈ Pu and the result
follows. ■

2.3.1. Additional Valid Inequalities Under the spanning
arborescence representation of feasible DPSTP solutions, the
following inequalities, derived from cycle cuts (2), are valid.

Proposition 5. Assume that a set of vertices C ⊂ V is given
where, GC = (C, E(C)) /∈ F , |δGC (i)| ≥ 2, i ∈ C, GC is
connected, and there exists a simple cycle of G that visits every
vertex in C. Let j and k be the neighbor vertices to i in that
simple cycle. A valid inequality for DPSTP is then given by

y(C \ {i}) + xr
ij + xr

ji + xr
ik + xr

ki

≤ |C| − 1, {i, j, k} ⊂ C, {i, j}, {i, k} ∈ E(C), GC /∈ F .
(13)

Proof. We have three cases to consider for a feasible
solution (xr , y):

• Case 1: xr
ij + xr

ji = xr
ik + xr

ki = 0.
From (2) and yi ≥ 0, one has: y(C \ {i}) ≤ y(C) ≤ |C| − 2 ≤
|C| − 1.

• Case 2: Only one edge incident to i exists in the cycle, say i,
j, that is, xr

ij + xr
ji = 1. For the other edge, xr

ik + xr
ki = 0.

Then, as neither (i, k) nor (k, i) is included in the arborescence,
the maximum number of vertices in C \ {i} having full degree
is |C|−2. Thus y(C \{i})+xr

ij +xr
ji +xr

ik +xr
ki ≤ |C|−2+1 =

|C| − 1 holds.
• Case 3: xr

ij + xr
ji = xr

ik + xr
ki = 1.

Then at least one edge in the remaining cycle edges (E(C) \
{{i, j}, {i, k}}) cannot have arcs corresponding to it in the
arborescence. As the endpoints of that edge cannot be of full
degree, the maximum number of full degree vertices in C \ {i}
is |C|−3. Thus y(C \{i})+xr

ij +xr
ji +xr

ik +xr
ki ≤ |C|−3+2 =

|C| − 1 holds and the proof is complete.
■

2.4. Reformulation by Intersection

One drawback of formulation Pr
D is that we cannot antici-

pate, beforehand, a root vertex leading to the strongest LP
relaxation bound. Attempting to overcome that limitation
and obtain a symmetric formulation that hopefully provides
stronger LP relaxation bounds, we make use of a technique
known as reformulation by intersection, proposed by Gouveia
and Telhada [8]. The procedure was originally introduced for
the multiweighted Steiner tree problem and was later on used
to derive stronger formulations for other combinatorial opti-
mization problems like the min-degree constrained minimum
spanning tree problem [17, 18] and the minimum spanning
tree problem with a lower bound on the number of leaves [9].

The idea is to reformulate DPSTP by simultaneously tak-
ing into account all polytopes Pr

D, for r ∈ V , and then impose
that the individual arborescences resulting from each of them
originate from a same set of edges of E. That condition is
imposed by intersection constraints

zij = xr
ij + xr

ji, {i, j} ∈ E, r ∈ V , (14)

and DPSTP may thus be reformulated as

w = max{y(V) : (x1, . . . , xn, z, y) ∈ PI ∩ (R2mn×R
m×B

n)},
(15)

where polytope PI is given by the intersection of (14) and
∩n

r=1Pr
D. An important property associated with formulation

PI is its compactness, that is, neither subtour breaking con-
straints (7b) nor directed cutset constraints (11c) are required
by it (see [8, 17] for details). Indeed, once the intersec-
tion constraints (14) are imposed, (7b) and (11c) become
redundant.

3. ALGORITHMS

In this section, we introduce four exact solution procedures
for DPSTP. Namely, a combinatorial Benders decomposition
algorithm based on formulation PC , CBEN, a BB algorithm
based on Pu, BBU, a BC algorithm based on Pr

D reinforced
with inequalities (1), (2), and (13), BCD, and, finally, a BB
algorithm based on PI , BBI.

BBU is a depth-first BB algorithm that uses (9) to obtain
valid upper bounds for DPSTP. It also uses the spanning tree
of G that solves (9) to derive valid lower bounds for the
problem. BBI was implemented by means of the XPRESS
solver Mosel programming language. All XPRESS default
parameters for heuristics, branching rules and cutting poli-
cies were kept for that algorithm. As PI is compact, other than
loading the corresponding DPSTP model into XPRESS, no
significant implementation work for BBI was actually con-
ducted by us. Therefore, no further details are provided on that
algorithm. BCD and CBEN, conversely, were implemented
with calls to the XPRESS MIP libraries. Except for BBI, all
remaining exact solution algorithms considered here make
use of the primal DPSTP heuristics to be described next.
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3.1. Heuristics

The first heuristic, called MWTREE(c), associates
weights {cij : {i, j} ∈ E} to the edges of E and then computes
a maximum weight spanning tree of G, according to these
edge weights. The number of full degree vertices in such a
tree is taken as a lower bound on w. The heuristic is used not
only to initialize CBEN and BCD, but also throughout these
algorithms. That strategy has two objectives in mind. The
first one is to attempt to improve the primal bounds obtained
at the root node of the enumaration tree. The second, as we
shall see, is to characterize violated inequalities (1) and (2),
as well as (13) for the case of BCD. As it will be explained
later, that is done by assigning different weights to the edges
of G. These weights, in turn, originate from the different LP
relaxations at hand. For the initialization of CBEN and BCD,
weights cij = 1

|δ(i)| + 1
|δ(j)| , {i, j} ∈ E are applied.

The second heuristic, STAR(p), is the Greedy Star Inser-
tion Algorithm proposed in Bhatia et al. [1]. The heuristic is
used for algorithms BCD, BBU, and CBEN. Using the union-
find data structure [20], STAR(p) runs in time O(mα(m, n)),
where α(m, n) denotes the inverse Ackermann function. It is
proven to produce a spanning tree with at least w

2
√

n+1
full

degree vertices [1].
STAR(p) is a Kruskal-like algorithm where one attempts

to build a forest (V , EF) by adding stars {δ(i) : i ∈ V} of
G to EF (initially EF = ∅). Instead of selecting one edge at
a time, as imposed by Kruskal’s algorithm, STAR(p) selects
all edges in δ(i) \ EF , for a given chosen i ∈ V , provided
none of these edges induce a cycle with previously selected
edges. If at least one edge in δ(i) \ EF , say e, is such that
(V , EF ∪{e}) /∈ F , no edge in δ(i) \ EF is selected. Then, the
edges incident to another (uninvestigated) vertex are consid-
ered. When no vertex remains to be investigated, whenever
necessary, additional edges are inserted to the forest, to make
it a spanning tree of G. In the original implementation in [1],
the sequence under which stars are investigated is the lower
the degree of a vertex, the sooner it is investigated (ties are
broken arbitrarily). Given that our aim is to call the heuris-
tic several times throughout our exact solution algorithms, a
priority vector p ∈ R

n is used in an attempt to bring dual
information into the picture and ultimately defining the order
in which vertices are to be investigated. For the first call of
the heuristic, the priority vector is such that vertices scanned
earlier have smaller degrees. That condition is ensured, for
instance, by taking pi = 1

|δ(i)| , i ∈ V .

3.2. Combinatorial Benders Decomposition Algorithm

Formulation (5) may be used to design a so-called com-
binatorial Benders decomposition algorithm [3, 10]. In that
case, split cuts (1) and cycle cuts (2) would play the role of
feasibility cuts. Such an algorithm would explore the fact that
the separation problem associated with these inequalities is
solvable in polynomial time, for a given ŷ ∈ B

n. One may
then attempt to solve DPSTP by solving integer programming
relaxations of (5) that include only a tiny portion of feasibility

cuts (1) and (2). Remaining inequalities (1) and (2) would be
treated as cutting planes, in a Benders-like fashion.

The algorithm we ended up implementing does explore the
ideas above. However, it operates under an iterative probing
framework (as in a similar approach for solving the minimum
connected dominating set problem [7]), that relies on the fact
that full degree spanning trees of G interpolate [12], as men-
tioned in the Introduction. An obvious consequence of that
property is the result that follows.

Corollary 6. Assume, for a given W ⊂ V, that
(�(W), δ(W) ∪ E(W)) ∈ F holds and, consequently, that
|W | is a valid lower bound on w. Then, if no spanning tree of
G exists with |W | + 1 full degree vertices, no such trees exist
with a larger number of full degree vertices.

Therefore, given a set W such that (�(W), δ(W)∪E(W)) ∈
F holds, the idea of CBEN is to iteratively solve a feasibil-
ity problem that includes a tiny portion of cuts (1) and (2),
together with constraint

y(V) = |W | + 1. (16)

By Corollary 6, if the feasibility problem is infeasible,
|W | must be the maximum number of full degree vertices
in a spanning tree of G. However, if ŷ ∈ B

n is a solution
for that problem, let us define Ŝ = {i ∈ V : ŷi = 1}.
If (�(Ŝ), δ(Ŝ) ∪ E(Ŝ)) ∈ F holds, the algorithm updates
W ← Ŝ, increases by one unity the right-hand-side of (16)
and then solves the resulting feasibility problem. Otherwise,
if (�(W), δ(W)∪E(W)) /∈ F applies, the algorithm separates
cuts (1) and (2). Violated cuts are added to a new reinforced
feasibility problem, where the right-hand-side of constraint
(16) is kept fixed. This iterative probing procedure is repeated
until the feasibility problem being investigated turns out to
be infeasible.

3.2.1. Solving the Benders Subproblem To describe
how Benders subproblems are solved, assume that an ini-
tial feasible solution for DPSTP is available and let W be the
set of full degree vertices in it. Assume as well that the fea-
sibility problem formulated for W, possibly involving only
(16), and no feasibility cuts (1) and (2), is solved. Denote by
ŷ the corresponding solution and define Ŝ = {i ∈ V : ŷi = 1}.

The Benders subproblem consists of checking whether or
not (�(Ŝ), δ(Ŝ)∪E(Ŝ)) ∈ F . For a positive answer, there must
exist a tree, (V , ET ), for which (δ(Ŝ) ∪ E(Ŝ)) ⊆ ET holds.
Consequently, the right-hand-side of constraint (16) should
be increased by one unit. Otherwise, as it will be shown next,
there must exist a split-cut (1) or a cycle cut (2), violated by ŷ.

The separation algorithm, in a Kruskal-like style, attempts
to insert into a forest F = (V , EF) of G, initialized as EF = ∅,
as many edges of δ(Ŝ)∪E(Ŝ) as possible. To do that, it scans
every edge e ∈ δ(Ŝ)∪E(Ŝ), accepting those that do not form a
cycle with previously selected edges. The algorithm is based
on the result that follows.
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Proposition 7. For a given ŷ ∈ B
n, let Ŝ = {i ∈ V : ŷi = 1}

and EF ⊂ δ(Ŝ) ∪ E(Ŝ). Then, if (V , EF ∪ {e}) /∈ F , for
e ∈ δ(Ŝ)∪E(Ŝ), at least one feasibility cut (1)–(2) is violated
by ŷ. Identification of such a cut is performed in polynomial
time.

Proof. Assume that C denotes the set of vertices in the
single cycle of (V , EF ∪ {e}). Two possibilities are there to
consider:

• If C ⊆ Ŝ, ŷ(C) = |C| and a cycle cut (2) is violated by ŷ.
• If C �⊆ Ŝ, as it will be demonstrated, at least one split cut

(1), defined for a subset of the vertices of C, is violated. To
that aim, assume that C = {v1, . . . , v|C|}. Assume as well that
the unique cycle in (V , EF ∪ {e}) is given by the following set
of edges: {{v1, v2}, {v2, v3}, . . . , {v|C|−1, v|C|}, {v1, v|C|}}. As all
edges in the cycle belong to δ(Ŝ) ∪ E(Ŝ), at least one vertex
incident to every edge in the cycle must be in Ŝ. Thus, we have
that |Ŝ ∩ C| ≥ |C|

2 . Then, one has two cases to analyse:

– |Ŝ ∩ C| = |C|
2 .

Note that in this case, |C| must be even. So
partition C into V1 and V2 such that V1 =
{v1, v3, . . . , v|C|−1} and V2 = {v2, v4, . . . , v|C|} (i.e.,
V1 and V2 get alternate vertices in the cycle). Thus,
either V1 = Ŝ ∩ C or V2 = Ŝ ∩ C. Assuming that
the former holds true, ŷ(V1) = |Ŝ ∩ C| = |V1| and
a split cut (1) is violated.

– |Ŝ ∩ C| >
|C|
2 .

As every edge in the cycle must be incident to at
least one vertex in Ŝ, the cycle has at least one path
with at least two consecutive vertices in Ŝ. Assume
that consecutive vertices in C ∩ Ŝ are merged into
super-nodes. Assume as well that, after the merg-
ing operation, cycle C is now represented in terms
of a cycle that has vertices C̄ = {v̄1, v̄2, . . . , v̄|C̄|}.
Note that, under this notation, some vertices of C̄
represent single vertices of C, while others repre-
sent two or more consecutive vertices of C ∩ Ŝ.
Observe that, whenever one super-node v̄i ∈ C̄
includes (at least) two nodes of C, say vi, vj , we
can only have ŷvi = ŷvj = 1 (we do not merge
vertices with different values of ŷ’s into the same
super-node). Note as well that after the merging
operation, we cannot have |C̄| odd. That applies
as, otherwise, we would either have two consecu-
tive vertices vi, vj ∈ C ∩ Ŝ that were not merged
into the same super-node or, else, we would have
two consecutive vertices vi, vj ∈ C \ Ŝ.
Thus, as in the case above, we can partition C̄ =
V̄1 ∪ V̄2, such that V̄1 = {v̄1, . . . , v̄|C̄|−1} and V̄2 =
{v̄2, . . . , v̄|C̄|}. Define V1 as the vertices of C that
belong to the super-nodes in V̄1 (V2 is defined simi-
larlly). Then, either ŷ(V1) = |Ŝ∩C| and ŷ(V2) = 0
or else ŷ(V1) = 0 and ŷ(V2) = |Ŝ ∩ C|. Assuming
that the former holds true, ŷ(V1) = |Ŝ ∩ C| = |V1|
and a split cut is violated.

■

Strategies used for adding and lifting split and cycle cuts
are the following. Whenever C ⊆ Ŝ holds, we investigate if
the right-hand-side of (2) could be easily lifted from |C|− 2,

and add the resulting cut into a new, stronger, feasibility
problem. For the lifting, we check if (C, E(C)) defines a
clique of G. For a negative answer, we simply verify if
|E(C)| ≥ |C| + 1. For a positive one, the right-hand-side
of (2) is set to |C| − 3.

The following algorithm summarizes the Benders decom-
position algorithm:

• (Initialization) Run heuristics MWTREE(c) and STAR(p). Let
T∗ = (V , ET∗) denote the best solution obtained by these two
algorithms and let W be the set of full degree vertices in T∗.
Take constraint (16), written in terms of W, and proceed as
follows. Append to the first feasibility problem, cycle cuts (2),
defined by the set of vertices in the unique cycle in (V , ET∗ ∪
{e}), implied by every e ∈ E \ ET∗ .

• Repeat until a convergence criterion is met.
1. Solve the feasibility problem at hand.

(a) If it is infeasible, stop. The best known
solution T∗ solves DPSTP.

(b) Otherwise, let ŷ ∈ B
n be the solution

obtained for that problem and set Ŝ := {i ∈
V : ŷi = 1}:

i. If subgraph (�(Ŝ), δ(Ŝ) ∪ E(Ŝ)) is
not cycle free, there exists at least
one feasibility cut violated by ŷ.
Add that cut to a new feasibility
problem.

ii. After solving the Benders sub-
problem, run heuristic STAR(p),
with vector p now given by pi =

1
(1.1−ŷi)|δ(i)| , i ∈ V . If the solution
thus obtained improves on the best
feasible solution so far obtained,
update T∗ and the right-hand-side
of (16), accordingly.

iii. Otherwise, that is, if (�(Ŝ), δ(Ŝ) ∪
E(Ŝ)) is cycle free, update T∗ as
any spanning tree of G such that
every vertex in Ŝ has full degree in
T∗. Update as well the right-hand-
side of (16).

Notice that the distance between the initial lower bound
and the optimal number of full degree vertices is finite.
Notice as well that the number of feasibility cuts (1) and
(2) is equally finite. Therefore, the iterative probing Benders
decomposition algorithm terminates.

In the case (�(Ŝ), δ(Ŝ) ∪ E(Ŝ)) /∈ F , it suffices to add
only one cut y(Ŝ) ≤ |Ŝ| − 1, or a stronger version of it,
say y(Ŝ) ≤ α(Ŝ), to the new Benders feasibility problem.
However, several cuts are added at each iteration, one for
each cycle (V , EF ∪ {e}) identified when checking for the
feasibility of set Ŝ.

3.3. BB Algorithm Based on the Undirected Formulation

BBU is defined in terms of a list L of nodes/subproblems
where, for each subproblem, an LP similar to (9) must be
solved. In doing that, upper bounds are generated for DPSTP.
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For the root node, all vertices are free to be either of incom-
plete or full degree. The algorithm then computes a maximum
weight spanning tree of G, as implied by (9), through, for
instance, Kruskal’s algorithm. If the number of full degree
vertices in the best spanning tree so far obtained is at least
�w(Pu)�, the algorithm stops as that tree solves DPSTP. Such
a tree might even be the one corresponding to (9). Otherwise,
if the condition is not met, the algorithm branches and adds
new subproblems to L.

Every subproblem tackled by BBU is defined in terms of
two subsets of vertices of V, namely S0 and S1; S0 corre-
sponding to vertices that are set to be of incomplete degree;
S1 corresponding to those set to be of full degree. At the root
node of the enumeration tree, S0 = S1 = ∅. Additionally,
M is taken as any valid upper bound on w, say M = n, for
example.

The LP to be solved at each subproblem is then given by

w̄(S0, S1) = −M|S1|

+ max

⎧⎨
⎩(M + 1)

∑
i∈S1

yi +
∑

i∈V\(S0∪S1)

yi : (z, y) ∈ Pu

⎫⎬
⎭ ,

(17)

where S0 and S1 are the subsets of vertices defining the
subproblem and

yi = 1

|δ(i)| z(δ(i)), i ∈ V \ S0. (18)

Notice that constraints (8) are not forced to be tight for the
vertices in S0. Therefore, at least one edge incident to these
vertices must not be in the solution to (17). Then, for the
sake of reformulating the objective function of (17) in terms
of a weighted function of the edges of E, degree enforcing
constraints are only imposed to be tight for vertices in V \
S0. Notice as well that the contribution of {yi : i ∈ S1} to
w̄(S0, S1) is precisely |S1|, as long as the solution to (17) is
such that all vertices in S0 (respectively, S1) are of incomplete
(respectively, full) degree. Now, substituting the right-hand-
side of (18) for their corresponding y entries in (17),

w̄(S0, S1) = −M|S1| + max

⎧⎨
⎩

∑
{i,j}∈E

lijzij : z ∈ PSTP

⎫⎬
⎭ (19)

is obtained, where the weights lij depend on the subsets, S0

or S1, i and j belong to. These weights are then given by:

lij = 0, if i, j ∈ S0, (20a)

lij = M + 1

|δ(i)| , if i ∈ S1 and j ∈ S0, (20b)

lij = 1

|δ(i)| , if i ∈ V \ (S0 ∪ S1) and j ∈ S0, (20c)

lij = 1

|δ(i)| + M + 1

|δ(j)| , if i ∈ V \ (S0 ∪ S1) and j ∈ S1,

(20d)

lij = 1

|δ(i)| + 1

|δ(j)| , if i, j ∈ V \ (S0 ∪ S1), (20e)

lij = M + 1

|δ(i)| + M + 1

|δ(j)| , if i ∈ S1 and j ∈ S1. (20f)

To solve (19), one would first check if (�(S1), δ(S1) ∪
E(S1)) ∈ F applies. If the subgraph is not cycle free, the
corresponding BB node would be pruned by infeasibility.
However, the procedure that is actually used to solve (19)
relies on Kruskal’s algorithm, to find a maximum weight
spanning tree of G, under the weights {lij : {i, j} ∈ E}
defined above. Let T = (V , ET ) be the tree thus obtained.
If |δT (i)| < |δ(i)|, for any i ∈ S1, the subproblem is infea-
sible. Conversely, if |δT (i)| = |δ(i)|, for any i ∈ S0, the
subproblem is pruned by optimality. The validity of such
observations results from the fact that M is a valid upper
bound on w. If |δT (i)| < |δ(i)| and |δT (j)| = |δ(j)| hold,
for any i ∈ S0 and for every j ∈ S1, the LP relaxation for
that node is given by w̄(S0, S1) = ∑

{i,j}∈ET
lij − M|S1|. The

algorithm then counts the number of full degree vertices in
T, to eventually update the best lower bound w∗ at hand. If
�w̄(S0, S1)� ≤ w∗ holds, the node is pruned by optimality.
Otherwise, branching on vertex variables y is carried out as
follows. Define j = arg max{|δ(i)| : i ∈ V \ (S0 ∪ S1)} (ties
are broken arbitrarily). Two new subproblems, (S0, S1 ∪ {j})
and (S0 ∪ {j}, S1), are then added to the list.

The algorithm implements a depth-first search enumera-
tion where subproblem (S0, S1 ∪ {j}) is always investigated
before (S0 ∪ {j}, S1). Whenever L = ∅, the algorithm stops.
The spanning tree with the largest number of full degree
vertices identified by it, solves DPSTP.

3.4. BC Algorithm based on the Strengthened Cutset
Formulation

Algorithm BCD first solves relaxation max{y(V) :
(xr , y) ∈ P̄}, where P̄ is implied by (11a), (11b), (11d)–(11f),
and (12). If the solution thus obtained, (x̄r , ȳ), is integer and
corresponds to an arborescence of D, it implies an opti-
mal solution to DPSTP. Otherwise, we look for violated
inequalities (11c), (1), (2), and (13) to reinforce P̄.

Cutset inequalities (11c) are separated in O(n4) time, as
follows. Assume that D̄ = (V , Ā), for Ā = {(i, j) ∈ A :
x̄r

ij > 0}, is the support graph associated with (x̄r , ȳ), that
is, the LP relaxation solution at hand. For each i ∈ V \ {r},
compute a minimum cut A(V \ S, S), where r ∈ V \ S and
i ∈ S, separating r and i in the network defined by D̄ and arc
capacities {x̄r

ij : (i, j) ∈ Ā}. If x̄r(A(V \ S, S)) < 1, a cutset
(11c) is violated and is appended to the relaxation.

For the separation of (1), (2), and (13), we first define
edge weights cij = x̄r

ij + x̄r
ji, {i, j} ∈ E and run heuris-

tic MWTREE(c) for them. Assume that a spanning tree
T1 = (V , ET1) is thus obtained. T1 not only provides a valid
lower bound on w. It is also used in an attempt to identify
candidate sets of vertices implying violated inequalities (1),
(2), and (13).

336 NETWORKS—2015—DOI 10.1002/net



More precisely, for every edge e ∈ E \ET1 , we identify the
set of vertices CT1,e, that define the unique cycle of subgraph
(V , ET1∪{e}). After checking if the right hand side of (2) could
be easily lifted (as described in Section 2.1), we append the
cut to a new, strengthened, LP relaxation of DPTSP, in case
of violation. For every set CT1,e, we also attempt to reinforce
the relaxation by identifying violated inequalities (13). That
is conducted by checking, for all possible vertices i ∈ CT1,e,
if the cut (13) being implied is violated.

Given CT1,e, violated split cuts (1) are attempted to be
identified, as follows. Let CT1,e = {v1, . . . , v|CT1,e|}. If |CT1 , e|
is even, one sets V1 = {v1, v3, . . . , v|CT1,e|−1} and V2 =
{v2, v4, . . . , v|CT1,e|} and checks if inequality (1), written for
V1 or V2, is violated. If |CT1 , e| is odd, one defines V ′ as in
the proof of Proposition 7, that is, adds to V ′ any two consecu-
tive vertices in CT1,e, say, v1 and v2, and complements V ′ with
other alternate vertices in CT1,e, that is, v4, . . . , v|CT1,e|−1. One
then checks violation of inequalities (1), for every possible
pair of consecutive cycle vertices, v1 and v2.

Given (x̄r , ȳ), we also run heuristic STAR(p), after taking
pi = 1

(1.1−ȳi)|δ(i)| , i ∈ V as the input priorities. Assuming that
a spanning tree T2 = (V , ET2) is returned by the procedure,
one then proceeds, as previously suggested for T1. Namely,
one attempts to identify additional inequalities (1), (2), and
(13) that are violated. As before, that is carried out by inves-
tigating the cycles of G resulting from adding to T2 one edge
of E \ ET2 a time.

In conclusion, for every LP relaxation solution (x̄r , ȳ),
found at any enumeration tree node, we separate (11c), find
T1 and T2 and proceed with the separation of (1), (2), and
(13), as described above. The separation of valid inequal-
ities is carried out until no more violated cuts are found.
Then, if the LP relaxation solution is not integral valued,
BCD branches on variables.

In our implementation, preference is given to branching
first on xr and then on y. We experimented with other branch-
ing strategies, namely: (1) branching first on y and then on xr ,
(2) branching first on y and then on the special ordered sets
implied by (11b), and (3) branching only on y. For the latter
strategy, we did not prove that y ∈ B

n implies xr ∈ B
2m.

Nevertheless, for the instances in our test bed, we never had
to branch on xr if preference was given to branching first on y.
The other three branching strategies led to worse CPU times,
if compared to the strategy of branching first on xr .

BCD implements a best-first search. Apart from the
heuristics, cut generation and preprocessing procedures that
were turned off, all other default XPRESS settings were used.

4. COMPUTATIONAL RESULTS

Instances in our computational experiments have n ∈
[25, 175] and different ranges for the graph density, for dif-
ferent values of n. Some instances considered in the current
study were introduced in [6]. Additional ones are introduced
here according to the procedure used in [6], described next.

For a given size n, we generated DPSTP instances with-
out cutnodes nor bridges as follows. We first include in E

edges in an Hamiltonian cycle of G: {{1, 2}, {2, 3}, . . . , {n −
1, n}, {1, n}}. For the other pairs i, j ∈ V , we include the
corresponding edge i, j into E, according to a probability,
defined by a target graph density. Depending on the size
of the instances, the target density and the observed density
(defined as 100 2m

n(n−1)
) may differ significantly. That applies

especially for instances with small values of n, when the max-
imum amount ( n(n−1)

2 − n) of edges to be randomly picked
(after the Hamiltonian cycle edges were included in E) is
small. When that is the case, just one or two additional edges
that are included (or not) in E represent a large proportion of
the maximum number n(n−1)

2 of edges in a complete graph.
To illustrate, take instance 25_8. For that instance, n = 25 and
the target density used was 25%, while the measured density
is 27%.

In total, 42 instances were tested here. For n ∈
{30, 50, 75, 100, 125, 150}, we generated four instances with
graph densities in the range from 6 to 30%, with a nonregu-
lar pattern of graph density. For n = 25 and n = 175, a more
regular pattern of graph density was considered. For n = 25,
we generated two instances for each target density in the set
{10%, 15%, 20%, 25%}. For n = 175, we also generated two
instances for a target density of 5%. Instances with n = 25 and
target graph density of 5% were not considered here as they
include, in addition to the Hamiltonian cycle edges above,
only one or two more edges, being thus very easy to solve.
Our aim in including small (n = 25) and larger (n = 175)
instances with a more regular pattern for the target density is
to validate our empirical observation that the scale of increase
or decrease in difficulty for solving the instances varies with
different values of n.

All algorithms were implemented in C,C++ and com-
piled with g++. All computational results reported here were
obtained with an Intel XEON E5645Core TMi7-980 hexa-
core machine, running at 2.4 GHz, with 24 GB of shared
RAM memory. All algorithms were executed with only one
core; no multithreading was allowed. XPRESS MIP package
release 23.01.06 was used to implement CBEN, BCD, and
BBI.

4.1. LP Upper Bounds

In Tables 1 and 2, we present LP upper bounds for each
formulation considered here, respectively for 25 ≤ n ≤ 75
and 100 ≤ n ≤ 175. The first two columns of the tables
provide the instance name, followed by its density, defined
as 100 2m

n(n−1)
. The next two columns, respectively, indi-

cate bounds w(Pu) and w(Pr
d). The next column stands for

w(Pr+
d ), the bound implied by Pr

d when strengthened by
inequalities (1), (2), and (13). For the computation of that
upper bound, the same separation heuristics for inequalities
(1), (2), and (13) used by BCD were considered. The next two
LP bounds are w(Pr

D) and its strengthened version w(Pr+
D ).

Similarly, w(Pr+
D ) stands for the bound w(Pr

D) after the addi-
tion of those inequalities (1), (2), and (13) found violated by
our separation heuristics. The last upper bound in the tables is
the one provided by the reformulation by intersection. Finally,
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TABLE 1. Linear Programming upper bounds and lower bounds for DPSTP, 25 ≤ n ≤ 75

Linear programming upper bounds

Instance d (%) w(Pu) w(Pr
d) w(Pr+

d ) w(Pr
D) w(Pr+

D ) w(PI ) OPT STAR(p)

25_1 10.3 20.750 19.375 19.306 18.000 18.000 18.000 17 17
25_2 11.7 19.367 17.508 17.508 16.333 16.333 16.333 15 15
25_3 12.0 17.667 16.667 16.667 14.000 14.000 14.000 12 12
25_4 14.0 16.317 14.333 14.333 12.403 12.403 12.283 11 11
25_5 17.7 13.386 11.368 11.368 9.243 9.243 9.243 8 8
25_6 18.3 12.969 10.960 10.960 8.775 8.775 8.775 8 8
25_7 25.7 9.862 8.012 8.012 6.169 6.169 6.163 5 4
25_8 27.0 8.890 7.407 7.407 5.457 5.453 5.346 4 4
30_3 8.5 25.333 23.667 23.128 22.000 22.000 22.000 22 21
30_2 10.3 21.926 19.405 19.162 17.000 17.000 17.000 17 16
30_1 10.6 21.600 19.477 19.477 17.423 17.423 17.423 17 15
30_4 27.8 8.746 7.195 7.195 5.309 5.285 5.285 4 4
50_2 10.1 24.617 20.074 20.074 16.646 16.646 16.646 15 14
50_3 10.4 23.601 19.451 19.432 16.162 16.162 16.161 16 13
50_1 29.6 8.547 6.776 6.772 4.789 4.789 4.745 3 3
50_4 32.6 7.517 6.140 6.140 4.026 4.026 3.996 2 2
75_2 10.5 24.413 19.592 19.592 15.566 15.566 15.563 13 13
75_1 10.9 22.468 18.597 18.597 13.814 13.814 13.734 11 11
75_3 19.4 12.972 10.335 10.335 7.142 7.142 7.126 4 3
75_4 29.4 8.382 6.793 6.793 4.510 4.510 — 2 2

Any LP upper bound entry “—” indicates that the bound could not be evaluated within 1 CPU hour.

TABLE 2. Linear programming upper bounds and lower bounds for DPSTP, 100 ≤ n ≤ 175

Linear Programming upper bounds

Instance d (%) w(Pu) w(Pr
d) w(Pr+

d ) w(Pr
D) w(Pr+

D ) w(PI ) OPT STAR(p)

100_4 6.0 41.479 33.915 33.915 27.529 27.529 27.502 25 22
100_2 9.5 25.828 21.019 21.019 14.919 14.919 14.919 11 9
100_1 10.1 26.071 20.395 20.395 15.679 15.679 15.663 12 11
100_3 10.6 24.484 19.195 19.195 14.345 14.345 14.326 11 9
125_1 6.9 37.316 29.887 29.887 22.503 22.503 — (?) 18 17
125_2 7.6 32.987 26.479 29.479 19.381 19.381 — (?) 15 13
125_3 10.5 24.474 19.195 19.195 13.897 13.897 — 10 8
125_4 19.5 12.562 10.258 10.258 6.786 6.786 — 4 4
150_1 7.2 35.903 28.291 28.291 21.170 21.170 — (?) 16 15
150_2 7.6 34.241 27.049 27.049 20.460 20.460 — (?) 16 15
150_3 10.1 24.458 19.622 19.622 13.715 13.715 — 9 7
150_4 19.3 12.310 10.338 10.228 6.500 6.500 — 3 2
175_1 4.8 54.363 41.952 41.952 33.086 33.086 — (?) 27 25
175_2 5.1 50.951 40.146 40.146 31.610 31.610 — (?) 25 23
175_3 10.0 24.822 20.007 20.007 13.612 13.612 — 8 6
175_4 10.1 24.572 19.894 19.883 13.546 13.546 — 8 7
175_5 14.7 16.482 13.612 13.612 8.773 8.773 — 5 3
175_6 14.9 16.652 13.402 13.402 8.887 8.887 — 4 4
175_7 19.1 12.422 10.453 10.453 6.485 6.485 — 3 2
175_8 19.7 12.071 10.147 10.147 6.334 6.334 — 2 2
175_9 25.0 9.311 8.003 8.003 4.792 4.792 — 1 1
175_10 25.3 9.266 7.915 7.915 4.802 4.802 — 1 1

Any LP upper bound entry “—” indicates that the bound could not be evaluated within1 CPU hour. Whenever the optimal objective function is unknown, the
corresponding OPT entry is given together with a (?) indication.

the last two columns provide the optimal objective function
value (OPT) and the lower bound provided by STAR(p), the
approximation algorithm in [1]. Whenever the optimal solu-
tion is unknown, the best known lower bound is indicated
also in columns under headings OPT. In such cases, the lower

bound is presented with an accompanying symbol “?.” When-
ever an upper bound could not be evaluated within a time limit
of 3600 CPU seconds, an indication “-” is provided in the cor-
responding column. For all directed formulations considered
here, we have chosen r = 1 as the root arborescence.
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Each instance is indicated by a word n_ id, where n denotes
the size of the instance and id is used to characterize that
particular instance among the others having the same n. For
example, instance 175_1 is an instance with n = 175 whose id
is 1. Instances in all tables are presented in an increasing order
of n. For a given fixed n, instances are sorted in a nondecreas-
ing order of graph density. To allow comparisons with results
in [6], we keep the ids used in [6]. Therefore, for some values
of n, the tables do not present the instances in increasing order
of their id’s.

As one could expect, the evaluation of w(PI) is very
time consuming when n and the graph density increase. For
many cases, such bounds could not be computed within the
imposed time limit. For the remaining instances, PI provided
the strongest upper bounds among all formulations tested
here. Despite the fact that many violated constraints (1), (2),
and (13) have been found violated in the course of the cut-
ting plane algorithm, the bounds given by Pr+

D and Pr
D do not

change except for instances 25_8 and 30_4. Nevertheless, the
BCD algorithm that separates these constraints outperforms
its counterpart that does not. Degree enforcing constraints
significantly improved on bounds w(Pr

d). Among all models
considered here, Pu is the weakest. Considering only those
instances whose optimal solutions are known, STAR(p) pro-
vided lower bounds that are not more than three units away
from optimal solution values.

Finally, one important observation regarding the upper
bounds discussed here is the following. If one considers the
instances for which bounds w(PI) could be evaluated, quite
often, formulations Pr

D, Pr+
D , and PI essentially provided the

same upper bounds in practice. As the objective function
involves only integer coefficients, the floor of the bounds
provided by these formulations are also valid DPSTP upper
bounds. Thus, quite often, the bounds provided by formu-
lations Pr

D, Pr+
D and PI become the same when fractional

bounds w(Pr
D), w(Pr+

D ), and w(PI) are rounded down.

4.2. Comparison of Exact Algorithms

Detailed computational results for BBI, CBEN, BBU, and
BCD are given in Tables 3 and 4, respectively for 25 ≤ n ≤ 75
and 100 ≤ n ≤ 175. For BBI, BBU, and BCD, we indicate,
for each instance, the best lower (BLB) and upper (BUB)
bounds and the CPU time (t(s), in seconds) to obtain them.
For CBEN, we provide the best lower bound and an indication
(proven ?) about whether (yes) or not (no) BLB was proven
to be the optimal objective value. The next columns indicate
the CPU time, the total number of feasibility problems (iter)
that were solved and the total number of feasibility cuts (cuts)
added along the search. For BBU and BCD, we provide the
number of nodes investigated in the BB tree.

As it could be appreciated from results in the tables, BBI
is capable of solving only instances with n ≤ 50. For larger
instances, it never managed to find a feasible solution for the
problem. Although BBI is based on the strongest DPTSP for-
mulation, poor computational results were obtained mainly

because of the large number of constraints and variables
[O(nm)] explicitly handled by the algorithm.

BBU provided the highest success rate among all algo-
rithms, being able to solve 35 out of 42 instances, within the
imposed time limit. Except for instances 25_3, 30_1, 30_2,
50_2, 50_3, and 100_4, BBU also outperformed the other
algorithms in terms of CPU times, despite the fact that it
is based on the weakest DPSTP upper bounds considered
here. The main reasons for that seem to be the availabil-
ity of good initial DPSTP lower bounds, a very fast lower
bounding procedure, combined with effective branching and
search policies. The fact that BBU branches first on vertices
with high degrees and investigates first the yi = 1 branch was
of crucial importance to reduce the depth of the search tree,
as infeasibility could be early detected for many branches in
the tree. We tested another BBU implementation, for which
higher branching priorities were given to vertices with the
smallest degrees in G. Such an implementation solved only 27
out of the 35 instances originally solved by BBU. Among the
BBU unsolved instances, no additional instance was solved
by the second implementation. Conversely, considering only
those 27 instances that were solved by both, a 95% CPU
time increase was observed when the branching policy was
changed. For the instances that were not solved by both, the
algorithm that branches first on low degree vertices improves
on the initial lower bounds for more cases. That implemen-
tation provided the lower bounds of 24, 16, 16, and 24,
respectively for instances 100_4, 150_1, 150_2, and 175_2,
while BBU did not improve the initial upper bounds of 22,
14, 13, and 23 for the same instances.

Measured by the number of instances solved to proven
optimality, CBEN was the second best algorithm in our study.
It solved 29 out of 42 instances. For instances that BBU and
CBEN could solve within the imposed time limit, CBEN CPU
times were always larger than BBU counterparts. Sometimes,
CBEN took two orders of magnitude more running time than
BBU. Nevertheless, computational results lean in favor of
CBEN for those instances that are left unsolved by both.
At the end of the time limit, CBEN improved on the initial
heuristic lower bounds for instances 100_4, 150_1, 150_2,
and 175_2, while the same did not happen for BBU.

BCD solved only 20 of the instances to optimality, the sec-
ond lowest success rate in this study. Nevertheless, compared
to CBEN, BBU, and BBI, it was the only algorithm capable
of solving instance 100_4. Although, BCD CPU times were
larger than BBU counterparts for most of the instances, in six
cases (25_3, 30_1, 30_2, 50_2, 50_3, and 100_4), BCD was
the fastest algorithm. Compared to CBEN, there is also no
dominance. For some instances it is faster, while for others,
it is much slower. For four instances that were not solved by
any algorithm in this study, 125_1, 125_2, 175_1, and 175_2,
the best known upper bounds were provided by BCD.

As a general rule, dense instances seem to be harder to
BCD, as the CPU times needed to evaluate the LP relaxations
of the directed model tend to be larger. For CBEN and BBU,
it seems that the opposite holds. To validate such a claim,
observe that for a given n, sparse instances usually demand
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TABLE 3. Comparison of DPSTP exact solution approaches, 25 ≤ n ≤ 75

BBI CBEN BBU BCD

Instance PI PC Pu Pr+
D

Name Den (%) BLB BUB t(s) BLB Proven ? t(s) iter Cuts BLB BUB t(s) Nodes BLB BUB t(s) Nodes

25_1 10.3 17 17 0.44 17 Yes 0.59 63 190 17 17 0.00 1811 17 17 0.03 2
25_2 11.7 15 15 0.81 15 Yes 0.13 20 53 15 15 0.00 801 15 15 0.04 2
25_3 12.0 12 12 31.39 12 Yes 6.49 161 426 12 12 0.15 24607 12 12 0.07 51
25_4 14.0 11 11 1.47 11 Yes 0.46 10 167 11 11 0.03 3451 11 11 0.06 4
25_5 17.7 8 8 1,72 8 Yes 0.31 32 163 8 8 0.01 1899 8 8 0.08 2
25_6 18.3 8 8 3.20 8 Yes 0.38 38 211 8 8 0.01 1399 8 8 0.04 1
25_7 25.7 5 5 1.73 5 Yes 0.22 30 198 5 5 0.00 847 5 5 0.11 5
25_8 27.0 4 4 345.85 4 Yes 0.24 28 235 4 4 0.00 867 4 4 0.23 5
30_3 8.5 22 22 0.38 22 Yes 0.14 15 55 22 22 0.00 587 22 2 0.03 1
30_2 10.3 17 17 0.90 17 Yes 0.62 50 199 17 17 0.07 9327 17 17 0.02 1
30_1 10.6 17 17 1.28 17 Yes 0.17 14 70 17 17 0.06 9331 17 17 0.03 1
30_4 27.8 4 4 106.06 4 Yes 0.48 48 477 4 4 0.02 1065 4 4 0.29 5
50_2 10.1 15 15 2183.80 15 Yes 34.27 136 1140 15 15 15.28 896530 15 15 0.30 2
50_3 10.4 16 16 23.51 16 Yes 8.08 101 980 16 16 6.36 352207 16 16 0.08 1
50_1 29.6 — 4 — 3 Yes 6.80 166 2797 3 3 0.08 2695 3 3 18.07 99
50_4 32.6 — 3 — 2 Yes 12.72 357 4108 2 2 0.08 2377 2 2 26.94 295
75_2 10.5 — 14 — 13 Yes 95.58 167 2809 13 13 38.08 1183469 13 13 43.81 351
75_1 10.9 — 12 — 11 Yes 199.80 224 3430 11 11 55.99 1741013 11 11 246.90 1526
75_3 19.4 — 7 — 4 Yes 39.38 346 5024 4 4 0.86 18343 4 5 — 1829
75_4 29.4 — — — 2 Yes 91.34 770 11948 2 2 0.32 5469 2 2 754.26 937

TABLE 4. Comparison of DPSTP exact solution approaches, 100 ≤ n ≤ 175

BBI CBEN BBU BCD

Instance PI PC Pu Pr+
D

Name Den (%) BLB BUB t(s) BLB Proven ? t(s) iter Cuts BLB BUB t(s) Nodes BLB BUB t(s) Nodes

100_4 6.0 — 25 — 25 No — 557 8944 22 41 — 88773337 25 25 30.96 373
100_2 9.5 — 14 — 11 No — 795 9763 11 11 633.31 13183851 11 12 — 6576
100_1 10.1 — 15 — 12 Yes 1360.64 462 7432 12 12 273.46 5587181 12 14 — 1739
100_3 10.6 — 14 — 11 Yes 623.90 388 6538 11 11 170.34 3397119 11 12 — 2884
125_1 6.9 — — — 17 No — 1327 17831 17 37 — 58231725 18 20 — 1601
125_2 7.6 — — — 14 No — 1354 16780 14 32 — 56657444 15 19 — 4546
125_3 10.5 — — — 10 Yes 1296.96 540 10637 10 10 301.62 4113585 10 12 — 1904
125_4 19.5 — — — 4 Yes 249.21 647 21707 4 4 2.52 21951 4 5 — 576
150_1 7.2 — — — 16 No — 1039 19459 15 35 — 42068826 16 19 — 671
150_2 7.6 — — — 16 No — 928 18560 15 33 — 41117303 16 18 — 1252
150_3 10.1 — — — 9 Yes 1499.14 999 18222 9 9 619.46 6282171 8 12 — 823
150_4 19.3 — — — 3 Yes 947.61 1727 42730 3 3 4.3 28379 3 5 — 433
175_1 4.8 — — — 25 No — 1045 22661 25 54 — 37525072 27 31 — 564
175_2 5.1 — — — 24 No — 1036 23160 23 50 — 37246265 25 30 — 680
175_3 10.0 — — — 8 No — 1094 25047 8 8 697.8 5493395 8 12 — 131
175_4 10.1 — — — 8 No — 1223 24974 8 8 601.1 4662623 8 12 — 463
175_5 14.7 — — — 5 Yes 887.18 1206 35581 5 5 19.4 120987 5 7 — 290
175_6 14.9 — — — 4 Yes 1256.91 1601 40802 4 4 17.7 109985 4 8 — 143
175_7 19.1 — — — 3 Yes 1989.23 2568 67454 3 3 6.76 34567 3 5 — 111
175_8 19.7 — — — 2 No — 4293 71997 2 2 6.85 34443 2 5 — 139
175_9 25.0 — — — 1 No — 4760 48157 1 1 7.1 30449 1 4 — 133
175_10 25.3 — — — 1 No — 5739 57263 1 1 7.1 30449 1 4 — 61

several times more BBU nodes than denser instances to be
solved, which can be explained by the fact that, under the
branching rule we implemented, BBU detects infeasibility
very early in the search tree. Although the picture is less clear
in the iterative probing Benders case, it also seems that CBEN

works better for dense instances. That seems to apply because
the difference between optimal solution values and the initial
lower bounds provided by STAR(p) is usually smaller for
these instances. Being so, the number of updates in the right-
hand-side of the feasibility constraint (16) is smaller.
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Our computational results suggest that the same graph
density may lead to different levels of difficulty for solv-
ing instances with different values of n. In other words, an
instance of density d may be considered hard to solve for a
given value of n (compared to instances having the same size
n and other values of density) but relatively easy for n̄ >> n.
To substantiate such observation, take instances with n = 25
and n = 175 as examples. BBU solves all n = 25 instances
in more or less the same magnitude of CPU time, including
those with density close to 25%. However, the same does not
apply for n = 175. Instances with n = 175 and 25% density
are solved in about 7 seconds, while n = 175 instances with
10% density are not solved in 1 hour. In summary, the scale of
relative difficulty for the density is not the same for different
values of n.

4.2.1. Hybrid Algorithms Motivated by the good com-
putational results obtained by BBU, we implemented two
variants of CBEN and BCD, that make calls to BBU to
obtain the optimal cuts (3). These hybrid algorithms are
denoted HCBEN and HBCD, respectively for the Benders
and the BCD variants. Whenever a given set V ′ is such that
(�(V ′), δ(V ′) ∪ E(V ′)) /∈ F , we call BBU to define α(V ′),
for the feasibility cut implied by V ′. In the Benders case,
these sets are found when solving the Benders subproblem.
For the BCD, these sets are the fundamental cycles of the
spanning trees T1 and T2 devised by the separation heuris-
tics outlined in Section 3.4. Before checking for violation,
the optimal right-hand-side is computed and only then the
cut is appended to the model.

Computational results obtained by HCBEN and HBCD
are given in Table 5, under the same time limit of 3600 sec-
onds. Apart from tl(s), all other entries in the table have the
same meaning as in Tables 3 and 4. In Table 5, tl(s) stands
for the total amount of time, in seconds, taken to compute
the optimal right-hand-side in the feasibility cuts, by calling
BBU within each algorithm, HCBEN and HBCD.

HBCD managed to solve 75_3 and 125_4 that were not
solved by BCD. In general, HBCD outperforms BCD for
denser instances in our test bed. Take instance 75_4 as an
example. While BCD needed 937 nodes and about 754 sec-
onds to solve that instance, HBCD needed only 149 nodes
and 99 seconds to do the same. In a certain way, that goes
along with what one would expect. For dense instances, val-
ues of α should be significantly smaller than those values in
the right-hand-side of (1) and (2) and those values obtained
by simple liftings we described before. In addition, dense
instances are the hardest for BCD and the easiest for BBU.
All together, the time taken to lift the cuts, as compared to
overall HBCD time, tend to be small and, thus, the computa-
tion of the optimal lifting had a positive impact on the overall
CPU time. For sparse instances, the effect of the hybridiza-
tion is less important, as these are the hardest instances for
BBU and because lifted coefficients are likely to improve
less. Indeed, more often BCD dominates HBCD for sparse
instances. For instance 100_4, for example, both BCD and
HBCD explore more or less the same number of nodes in
the search tree. However, HBCD takes about 35 additional

seconds for solving the problem, corresponding to the total
time spent in attempting to lift the cuts.

Except for instances 175_9 and 175_10 that were not
solved by CBEN, HCBEN and CBEN solved the same set
of instances to optimality. While for HBCD, the total time
involved in lifting the feasibility cuts could be significant, this
time is smaller for HCBEN. That happens because HBCD
calls BBU more frequently and because the sizes of the
sets/subgraphs of G for which the liftings are computed are
typically small under the Benders framework. Conversely, for
HBCD, the subgraphs can be almost as large as G, depending
on the size of the fundamental cycles of T1 and T2 that are
characterized during our separation heuristics.

The fact that stronger feasibility cuts are being used within
HCBEN as opposed to CBEN translates into fewer feasibil-
ity problems to be solved, to verify optimality. Conversely,
the average time involved in solving each Benders feasibility
problem increased substantially for HCBEN. That is true as,
compared to CBEN, the overall CPU times for HCBEN some-
times increased substantially, despite the fact that HCBEN
usually needed fewer feasibility problems and cuts to solve
the problem. Note that the times involved in computing the
liftings were small, usually much smaller than the increase
in CPU time observed from CBEN to HCBEN. As an exam-
ple, consider instance 150_4. HCBEN needs about one half of
the iterations implemented by CBEN. Nevertheless, HCBEN
takes 70% more time to solve that instance. The calls of BBU
within HCBEN, though, are responsible for only 33 of these
730 additional CPU seconds.

5. CONCLUSIONS AND FUTURE RESEARCH

In this article, we provided integer programming formula-
tions and exact solution approaches for the DPSTP. Classes
of valid inequalities were also proposed and used within these
algorithms.

In total, four algorithms were proposed. BBU, a BB based
on an undirected spanning tree representation model, BCD, a
BC algorithm based on a spanning arborescence formulation,
CBEN, an iterative probing combinatorial Benders decom-
position and, finally, BBI, a BB based on the application of
the reformulation by intersection technique to the directed
model.

Despite being based on the weakest formulation, the
BB algorithm based on the undirected spanning tree rep-
resentation provided the best computational results, due to
conveniently chosen branching and search policies, com-
bined to the fact that its upper bounding procedure runs
very fast. The second best was CBEN, followed by the BCD
algorithm.

Motivated by the good results obtained by the BBU
method, we proposed two additional algorithms, a hybrid
Benders and a hybrid BCD. These two algorithms make calls
to the BBU method, to lift a particular type of valid inequal-
ities that were proposed here. These inequalities, denoted
feasibility cuts, impose that the maximum number of full
degree vertices in a cycle-free subgraph of G must not exceed
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TABLE 5. Computational results for hybrid algorithms, HCBEN and HBCD

HCBEN HBCD

Instance PC Pr+
D

Name Den (%) BLB Proven ? t(s) tl(s) iter Cuts BLB BUB t(s) tl(s) Nodes

25_1 10.3 17 Yes 0.53 0.02 56 175 17 17 0.04 0.00 2
25_2 11.7 15 Yes 0.07 0.01 14 38 15 15 0.03 0.00 2
25_3 12.0 12 Yes 9.94 0.02 169 454 12 12 0.09 0.00 51
25_4 14.0 11 Yes 0.60 0.01 38 153 11 11 0.07 0.00 3
25_5 17.7 8 Yes 0.09 0.07 1 1 8 8 0.08 0.00 2
25_6 18.3 8 Yes 0.26 0.03 19 102 8 8 0.03 0.00 1
25_7 25.7 5 Yes 0.28 0.01 22 139 5 5 0.09 0.00 3
25_8 27.0 4 Yes 0.38 0.02 29 219 4 4 0.22 0.00 5
30_3 8.5 22 Yes 0.07 0.01 13 42 22 22 0.02 0.00 2
30_2 10.3 17 Yes 0.18 0.12 7 32 17 17 0.02 0.00 1
30_1 10.6 17 Yes 0.11 0.01 19 82 17 17 0.02 0.00 1
30_4 27.8 4 Yes 0.62 0.05 30 307 4 4 0.38 0.05 3
50_2 10.1 15 Yes 45.02 0.29 126 1139 15 15 0.49 0.21 2
50_3 10.4 16 Yes 12.42 0.50 101 928 16 16 0.07 0.00 1
50_1 29.6 3 Yes 3.98 0.69 69 1090 3 3 9.21 1.10 49
50_4 32.6 2 Yes 6.78 0.99 127 1308 2 2 18.95 2.62 75
75_2 10.5 13 Yes 147.54 0.97 157 2726 13 13 48.54 10.24 452
75_1 10.9 11 Yes 198.99 1.11 226 3409 11 11 319.72 49.00 1468
75_3 19.4 4 Yes 37.84 2.19 280 3793 4 4 423.14 50.69 991
75_4 29.4 2 Yes 29.55 3.17 220 3202 2 2 99.12 9.45 149
100_4 6.0 25 No — 9.11 980 12580 25 25 66.61 34.22 387
100_2 9.5 11 No — 2.81 930 10144 11 12 — 327.43 7978
100_1 10.1 12 Yes 1664.81 2.41 461 7292 12 13 — 372.16 1689
100_3 10.6 11 Yes 593.76 2.98 340 6177 11 12 — 312.92 3238
125_1 6.9 17 No — 5.02 1240 17156 18 20 — 450.55 1512
125_2 7.6 15 No — 10.58 1057 16586 14 17 — 115.41 4848
125_3 10.5 10 Yes 1433.62 8.18 484 10260 10 12 — 215.47 1753
125_4 19.5 4 Yes 335.32 12.85 316 9689 4 4 3191.64 118.91 853
150_1 7.2 16 No — 10.31 1084 19690 16 19 — 231.96 610
150_2 7.6 16 No — 15.92 712 16832 16 18 — 82.32 1225
150_3 10.1 9 Yes 2072.85 15.00 852 16628 9 12 — 217.07 1827
150_4 19.3 3 Yes 1680.83 32.77 809 16805 2 5 — 202.76 403
175_1 4.8 25 No — 7.85 956 21761 27 31 — 104.84 540
175_2 5.1 24 No — 7.90 1181 24377 25 30 — 225.17 638
175_3 10.0 8 No — 28.06 1127 24362 8 12 — 99.80 87
175_4 10.1 8 No — 16.00 1191 24062 8 12 — 88.77 402
175_5 14.7 5 Yes 1036.93 16.73 795 25446 5 7 — 121.20 170
175_6 14.9 4 Yes 1740.47 14,60 1270 29743 4 8 — 57.21 68
175_7 19.1 3 Yes 1856.66 20.34 768 20364 3 5 — 122.85 190
175_8 19.7 2 No — 22.86 1804 26980 2 5 — 61.86 74
175_9 25.0 1 Yes 577.09 40.84 1063 9843 1 3 — 136.90 227
175_10 25.3 1 Yes 861.56 41.16 1175 10972 1 3 — 120.91 187

the number of full degree vertices in an optimal solution for a
DPSTP instance, conveniently defined for that subgraph. As
such, the computation of the optimal feasibility cuts involves
solving a DPSTP for a subgraph of G. The BBU method was
thus used to compute the optimal cuts within the Benders and
the BCD frameworks. Our computational results indicated
that, for dense instances, the hybrid BCD method outper-
formed its original version that uses suboptimal feasibility
cuts. The hybrid Benders had its total number of Benders
iterations reduced as a consequence of the optimal cuts. How-
ever, the overall CPU times were not reduced accordingly,
as each of these Benders problems became much harder to
solve.

One interesting possible future research consists of inves-
tigating, from a theoretical point of view, optimal liftings of
the feasibility cuts for certain classes of graphs. That would
allow us to use these cuts, with optimal coefficients, with-
out the need of calling an optimization procedure to compute
them, as we did here for general graphs.

We believe that the hybrid algorithms we introduced here
are promising and deserve further investigation. For the
hybrid Benders method, one interesting future research is
to devise specific algorithms to solve each Benders feasi-
bility problem, instead of using the black-box MIP tool we
used here. For example, a constraint programming approach
may be suitable for dealing with each Benders feasibility
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problem. The hybrid BCD algorithm could also benefit from
other lifting strategies that operate under more selective
and/or restrictive policies for calling the BBU algorithm
used to lift the cuts. Another algorithm that may be worth
investigating is a BC method based on the y formulation,
that only separates split and cycle cuts for integer valued
points.

Finally, once the reformulation by intersection provided
the strongest upper bounds in our study, other algorithms
based on that model might be worth investigating. Among
them, we could list decomposition approaches like classic
Benders decomposition and Lagrangian relaxation, to han-
dle the large number of constraints and variables in that
formulation.
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